

Dynamische Strommessung von ALLDAQ

ADQ-412Automatische Bereichsumschaltung

STRÖME HOCHGENAU UND DYNAMISCH MESSEN BIS ± 50A

- → Präzise Strommessung von wenigen µA bis 50A
- → Zwei potentialfreie Strommesskanäle
- → Isolationsspannung 700 VDC/VACeff.
- → Zwei 18Bit A/D-Wandler mit 1,6MS/s pro Kanal
- Strommessbereiche: ±25mA und ±50A
- → Unterbrechungsfreie Bereichsumschaltung
- → Im 25mA-Bereich wird bei Überschreitung automatisch auf den 50A-Bereich geschaltet
- → Die Messbereiche sind rücklesbar

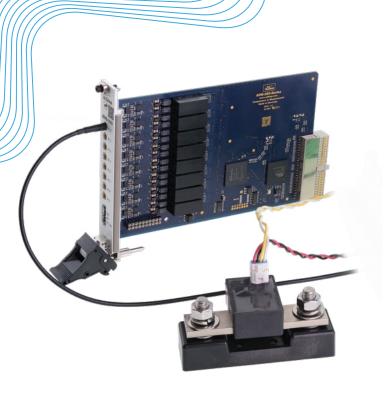
ADQ-422 Ideal für E-Mobility

STROM UND SPANNUNG SYNCHRON MESSEN BIS ± 100A/750V

- → Ein potentialfreier Strommesskanal
- → Shuntbasierende Messung bis ± 100A
- → Ein potentialfreier Spannungsmesskanal bis ±750V
- → Synchronstart beider Kanäle zur Leistungsmessung
- → Zwei isolierte Triggereingänge (+5V TTL-Pegel)
- → Hochpräziser 24Bit A/D-Wandler bis 1,5MS/s
- → Möglichkeit zur Mittelwertbildung mit digitaler Filterstufe
- → Signalrauschabstand bis 140dB
- → Sicherheitsabschaltung des Spannungskanals bei ±845V

DYNAMISCHE STROMMESSUNG: WELCHE MÖGLICHKEITEN BEI ALLDAQ GIBT ES?

Wir möchten Ihnen hier einen Überblick geben über die dynamische Strommessung von ALLDAQ.


Auf dieser Seite sehen Sie oben links unsere in der Industrie oft eingesetzte ADQ-412 PXI, die dynamische Strommessung mit einer sehr hohen Abtastrate 1,6Ms pro Kanal möglich macht.

Die Genauigkeit wird durch den präzisen 18Bit A/D-Wandler und zwei Isabellenhütten-Shunts erreicht. Ein robustes Arbeitspferd und ein High-Runner in unserem Portfolio!

Auf der rechten Seite die ADQ-422 PXI, die nur einen Stromkanal und einen Messbereich bietet, dieser geht allerdings bis ± 100A und wird mit 24Bit abgetastet.

Nähere Daten und einen Vergleich der vorgestellten Strommessgeräte finden Sie auf der Rückseite.

SMART CURRENT

Eine weitere Option dynamisch Ströme zu messen ist der **Smart Current Sensor**. Mit diesem können Sie Ströme bis zu 1000A messen, die Isolationsspannung beträgt 1500VDC/1000VAC RMS.

Die analog zum Strom ausgegebene Spannung wird mittels eines DMM oder einer unserer Analog-In Boards gemessen, idealerweise mit einer **ADQ-258** (18Bit).

FEATURES

→ Typische Anwendungen:

- Batteriesysteme
- USV-Anlagen
- Motorantriebe
- Frequenzumrichter
- Brennstoffzellen
- → 1500VDC Isolationsspannung
- → Ausgangsverstärkung
- → 0,1% Toleranz
- → Betriebsspannung 3,0V 5,5VDC

→ Verfügbare Ausführungen:

±100A/±250A/±500A/±1000A

→ Vorteile gegenüber der Hall-Effekt-Technologie:

- Bessere Genauigkeit der Strommessung
- Unipolare Spannungsversorgung
- Geringe Temperaturdrift
- Keine periodische Kalibrierung nötig
- Weiter Betriebstemperaturbereich

DIFFERENTIELLE ANALOG-AUSGANGSSPANNUNGEN

100A = 12mV/A	250A = 5mV/A	Linerarität	±0,1%
500A = 2,5mV/A	1000A = 1,25mV/A	Bandbreite	300KHz
Offset max	≤ ± 0,3mV	Reaktionszeit	1,6µS
Genauigkeit	±0,1%	Isolationsspannung	1500VDC / 1000V AC RMS

AUFLÖSUNGSVERGLEICH DER VERSCHIEDENEN SYSTEME

Ausgangsspannung des 100A Sensor gemessen mit: Direktmessung mit einer Strommesskarte:

ADQ-255/16Bit:LSB = 26,04mAADQ-412 ±50A/18Bit:LSB = 381,47μAADQ-258/18Bit:LSB = 6,51mAADQ-422 ±100A/24Bit:LSB = 11,92μA